Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36005705

RESUMO

Lithium-sulfur batteries with high theoretical specific capacity and high energy density are considered to be one of the most promising energy storage devices. However, the "shuttle effect" caused by the soluble polysulphide intermediates migrating back and forth between the positive and negative electrodes significantly reduces the active substance content of the battery and hinders the commercial applications of lithium-sulfur batteries. The separator being far from the electrochemical reaction interface and in close contact with the electrode poses an important barrier to polysulfide shuttle. Therefore, the electrochemical performance including coulombic efficiency and cycle stability of lithium-sulfur batteries can be effectively improved by rationally designing the separator. In this paper, the research progress of the modification of lithium-sulfur battery separators is reviewed from the perspectives of adsorption effect, electrostatic effect, and steric hindrance effect, and a novel modification of the lithium-sulfur battery separator is prospected.

2.
Membranes (Basel) ; 12(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35629845

RESUMO

Adsorptive ultrafiltration mixed matrix membranes (MMMs) are a new strategy, developed in recent years, to remove harmful cations and small-molecule organics from wastewater and drinking water, which achieve ultrafiltration and adsorption functions in one unit and are considered to be among the promising technologies that have exhibited efficiency and competence in water reuse. This mini review concerns the research progress of adsorptive ultrafiltration MMMs for removing heavy metal ions and small-molecule organics. We firstly introduce the types and classifications of adsorptive ultrafiltration MMMs (their classifications can be established based on the type of the adsorbent used). Furthermore, we discuss the removal mechanism of adsorptive ultrafiltration MMMs, as well as summarizing the main fabrication techniques for adsorptive ultrafiltration membranes. In addition, we identified some of the issues and challenges of the practical application for adsorptive ultrafiltration.

3.
Chembiochem ; 22(24): 3431-3436, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34617654

RESUMO

Rapid and sensitive point-of-care testing (POCT) is an extremely critical mission in practical applications, especially for rigorous military medicine, home health care, and in the third world. Here, we report a visual POCT method for adenosine triphosphate (ATP) detection based on Taylor rising in the corner of quadratic geometries between two rod surfaces. We discuss the principle of Taylor rising, demonstrating that it is significantly influenced by contact angle, surface tension, and density of the sample, which are controlled by ATP-dependent rolling circle amplification (RCA). In the presence of ATP, RCA reaction effectively suppresses Taylor-rising behavior, due to the increased contact angle, density, and decreased surface tension. Without addition of ATP, untriggered RCA reaction is favorable for Taylor rising, resulting in a significant height. With this proposed method, visual sensitive detection of ATP without the aid of other instruments is realized with only a 5 µL droplet, which has good selectivity and a low detection limit (17 nM). Importantly, this visual method provides a promising POCT tool for user-friendly molecular diagnostics.


Assuntos
Trifosfato de Adenosina/genética , Técnicas Biossensoriais , Técnicas de Amplificação de Ácido Nucleico , Testes Imediatos , Humanos
4.
Phys Rev E ; 97(2-1): 022111, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29548129

RESUMO

We investigate the heat transport between two nonthermal reservoirs based on a microscopic collision model. We consider a bipartite system consisting of two identical subsystems, and each subsystem interacts with its own local reservoir, which consists of a large collection of initially uncorrelated ancillas. Then a heat transport is formed between two reservoirs by a sequence of pairwise collisions (intersubsystem and subsystem-local reservoir). In this paper we consider two kinds of the reservoir's initial states: the thermal state and the state with coherence whose diagonal elements are the same as that of the thermal state and the off-diagonal elements are nonzero. In this way, we define the effective temperature of the reservoir with coherence according to its diagonal elements. We find that for two reservoirs having coherence the direction of the steady current of heat is different for different phase differences between the two initial states of two reservoirs, especially the heat can transfer from the "cold reservoir" to the "hot reservoir" in the steady regime for particular phase difference. In the limit of the effective temperature difference between the two reservoirs ΔT→0, for most of the phase differences, the steady heat current increases with the increase of effective temperature until it reaches the high effective temperature limit, while for the thermal state or particular phase difference the steady heat current decreases with the increase of temperature at high temperatures, and in this case the conductance can be obtained.

5.
Sci Rep ; 7(1): 5826, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28725054

RESUMO

The radical pair (RP) based compass is considered as one of the principal models of avian magnetoreception. Different from the conventional approach where the sensitivity of RP based compass is described by the singlet yield, we introduce the quantum Fisher information (QFI), which represents the maximum information about the magnetic field's direction extracted from the RP state, to quantify the sensitivity of RP based compass. The consistency between our results and experimental observations suggests that the QFI may serve as a measure to describe the sensitivity of RP based compass. Besides, within the framework of quantum metrology, we give two specific possible measurement schemes and find that the conventional singlet yield is corresponding to the measurement of total angular momentum. Moreover, we show that the measurement of fluctuation of the total magnetic moment is much more accurate than the singlet yield measurement, and is close to the optimal measurement scheme. Finally, the effects of entanglement and decoherence are also discussed in the spirit of our approach.

6.
Sci Rep ; 6: 33254, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27623048

RESUMO

In this paper, we focus on the magnetic field sensing subject to a correlated noise. We use a ring spin chain with only the nearest neighbor interactions as our probe to estimate both the intensity B and the direction θ of the magnetic field when the probe reaches its steady state. We numerically calculate the quantum Fisher information (QFI) to characterize the estimation precision. On the one hand, for estimating B, we find that the coupling between spins in the probe plays an important role in the precision, and the largest value of the QFI can be achieved when θ = π/2 together with an optimal coupling. Moreover, for any direction, the precision scaling can be better than the Heisenberg-limit (HL) with a proper coupling. On the other hand, for estimating θ, we find that our probe can perform a high precision detection for θ ~ π/2, with the QFI much larger than that for any other directions, especially when the coupling is tuned to the optimal value. And we find that the precision scaling for θ ~ π/2 can be better than the HL, but for other directions, the precision scaling is only limited to the standard quantum limit (SQL). Due to the computational complexity we restrict the number of spins in the probe to 60.

7.
Sci Rep ; 6: 22417, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26926264

RESUMO

What is the real role of the quantum coherence and entanglement in the radical pair (RP) compass, and what determines the singlet yield have not been fully understood. In this paper, we find that the dark states of the two-electron Zeeman energy operator (TEZE) play an important role in the RP compass. We respectively calculate the singlet yields for two initial states in this dark state basis: the coherent state and the same state just removing the dark state coherence. For the later there is neither dark state coherence nor entanglement in the whole dynamical process. Surprisingly we find that in both cases the singlet yields are the same, and based on this result, we believe that the dark state population determines the singlet yield completely, and the dark state coherence and entanglement have little contribution to it. Finally, we also find that the dark state population as well as the singlet yield anisotropy is fragile to the vertical magnetic noise. However, the orientation is robust and is even enhanced by the parallel magnetic noise because the dark states expand a decoherence-free subspace. The dark state population as well as the orientation is more robust to the hyperfine coupling noise.

8.
Artigo em Inglês | MEDLINE | ID: mdl-25375527

RESUMO

Although the radical pair (RP) model is widely accepted for birds' orientation, the physical mechanism of it is still not fully understood. In this paper we consider the RP model in the total angular-momentum representation and clearly show a detailed mechanism for orientation. When only the vertical hyperfine (HF) coupling component is considered, analytical expressions of singlet yield angular profiles are obtained with and without considering the radio frequency field, and when the horizontal HF coupling components are considered, a numerical calculation of the singlet yield is given. Based on these analytical and numerical results we present a detailed account of the following issues: how the HF coupling induces the singlet-triplet conversion; why the vertical radio frequency field can disorient the birds, while the parallel one cannot; and why the birds are able to "train" to different field strengths. Finally, we consider a multinuclei RP model.


Assuntos
Aves/fisiologia , Campos Magnéticos , Modelos Biológicos , Orientação/fisiologia , Ondas de Rádio , Animais , Anisotropia , Simulação por Computador , Fenômenos Geológicos , Navegação Espacial/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-25353764

RESUMO

We consider a model of an optical cavity with a nonequilibrium reservoir consisting of a beam of identical two-level atom pairs (TLAPs) in the general X state. We find that coherence of multiparticle nonequilibrium reservoir plays a central role on the potential work capability of the cavity. We show that no matter whether there are quantum correlations in each TLAP (including quantum entanglement and quantum discord) or not, the coherence of the TLAPs has an effect on the work capability of the cavity. Additionally, constructive and destructive interferences could be induced to influence the work capability of the cavity by adjusting only the relative phase, with which quantum correlations have nothing to do. In this paper, the coherence of the reservoir, rather than the quantum correlations, effectively reflecting the effects of the reservoir on the system's work capability is demonstrated clearly.

10.
Artigo em Inglês | MEDLINE | ID: mdl-24125290

RESUMO

Migratory birds can utilize the geomagnetic field for orientation and navigation through a widely accepted radical-pair mechanism. Although many theoretical works have been done, the available experimental results have not been fully considered, especially the temporary disorientation induced by the field which is increased by 30% of the geomagnetic field and the disorientation of the very weak resonant field of 15 nT. In this paper, we consider the monotonicity of the singlet yield angular profile as the prerequisite of direction sensitivity, and find that for some optimal values of the hyperfine coupling parameters (that is, the order of 10^{-7}∼10^{-6} meV) the experimental results available so far can be satisfied. We also investigate the effects of two decoherence environments and demonstrate that, in order to satisfy the available experimental results, the decoherence rate should be lower than the recombination rate. Finally, we investigate the effects of the fluctuating magnetic noises and find that the vertical noise destroys the monotonicity of the profile completely, but the parallel noise preserves the monotonicity perfectly and even can enhance the direction sensitivity.


Assuntos
Migração Animal , Aves , Modelos Biológicos , Orientação , Animais , Fenômenos Magnéticos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...